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A generalist vision–language foundation 
model for diverse biomedical tasks
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Zhengliang Liu2, Xun Chen    3, Brian D. Davison    1, Hui Ren4, Jing Huang5,6, 
Chen Chen7, Yuyin Zhou8, Sunyang Fu    9, Wei Liu    10, Tianming Liu2, 
Xiang Li    4  , Yong Chen5,11,12,13, Lifang He    1  , James Zou    14,15, Quanzheng Li4, 
Hongfang Liu    9 & Lichao Sun    1 

Traditional biomedical artificial intelligence (AI) models, designed for specific  
tasks or modalities, often exhibit limited flexibility in real-world deployment 
and struggle to utilize holistic information. Generalist AI holds the potential 
to address these limitations due to its versatility in interpreting different data  
types and generating tailored outputs for diverse needs. However, existing  
biomedical generalist AI solutions are typically heavyweight and closed 
source to researchers, practitioners and patients. Here, we describe 
BiomedGPT, the first open-source and lightweight vision–language 
foundation model, designed as a generalist capable of performing various 
biomedical tasks. BiomedGPT achieved state-of-the-art results in 16 out of 25 
experiments while maintaining a computing-friendly model scale. We also 
conducted human evaluations to assess the capabilities of BiomedGPT in 
radiology visual question answering, report generation and summarization. 
BiomedGPT exhibits robust prediction ability with a low error rate of 3.8% in 
question answering, satisfactory performance with an error rate of 8.3% in 
writing complex radiology reports, and competitive summarization ability 
with a nearly equivalent preference score to human experts. Our method 
demonstrates that effective training with diverse data can lead to more 
practical biomedical AI for improving diagnosis and workflow efficiency.

AI techniques, especially transformer-based foundation models, have 
demonstrated their power in solving a wide range of biomedical tasks, 
including radiology interpretation, clinical-information summarization 
and precise disease diagnostics1. However, most of today’s biomedical 
models act as specialist systems, tailored to specific tasks and modali-
ties2. Such specialization comes with substantial challenges in model 
deployment, especially with the growing interest in using AI for preci-
sion medicine and patient-centered care, which require the integra-
tion and analysis of diverse data types and patient-specific details3,4. 
Furthermore, the hyper-specialization of AI in narrow disciplines often 
fails to provide the comprehensive insights necessary to assist doctors 
in real-world settings, where the flow of information can be slow and 

sporadic2,5. A generalist biomedical AI has the potential to overcome 
these limitations by using versatile models that can be applied to  
different tasks and are robust enough to handle the intricacies of  
medical data effectively2,6.

The emergence of general-purpose foundation models7,8 offers 
a prototype for the development of biomedical generalist AI. These 
advanced models serialize diverse datasets, regardless of their modali-
ties, tasks or domains, into a uniform sequence of tokens, which are 
then processed using a transformer neural network9. Unlike large lan-
guage models10,11, which are primarily designed for processing textual 
data, generalist models can handle both textual and visual information 
simultaneously. This capability is pivotal for complex biomedical 
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aid in disease diagnostics and lesion recognition; text understanding 
and summarization can streamline clinic operations, such as easing 
doctors’ note-writing burden. Furthermore, image captioning and 
VQA lay the groundwork for future healthcare chatbots, addressing 
challenges in which common language might be ambiguous but medi-
cal terminology is too complex for most people to understand. The 
complete statistics of downstream datasets used in this article are 
shown in Extended Data Figure 1b.

BiomedGPT is lightweight but competitive in multimodal 
tasks
We fine-tuned BiomedGPT on two primary multimodal tasks, VQA and 
image captioning, each using three downstream datasets. The VQA 
datasets included radiology data covering five anatomies (VQA-RAD17 
and Semantically-Labeled Knowledge-Enhanced Dataset (SLAKE)18), 
in addition to pathology data that captures both anatomical and 
tissue-specific details (PathVQA19). For captioning, we incorporated 
chest X-ray (CXR) datasets (IU X-ray20 and Medical Information Mart 
for Intensive Care III-CXR (MIMIC-CXR)21) as well as clinical photo-
graphs from Peir Gross22. For comparison, we benchmarked BiomedGPT 
against leading models for each dataset15,23–25.

We evaluated our model’s VQA performance by comparing gene
rated answers with the ground truths. The overall accuracy of our 
BiomedGPT model is detailed in Extended Data Table 1. Notably, 
BiomedGPT achieved an 86.1% overall accuracy on the SLAKE data-
set, surpassing the previous state-of-the-art (SOTA) performance of 
85.4%, set by BiomedCLIP15. Additionally, we dissected the accuracy of 
both ‘closed ended’ and ‘open ended’ question–answer pairs (Fig. 3a). 
Our model recorded promising closed-ended accuracies: 88.0% on 
PathVQA, up by 1.0% compared with the performance of the current 
SOTA model25. On the SLAKE dataset, BiomedGPT-B achieved an 89.9% 
closed-ended accuracy, down by 1.1% compared with the M2I2 model’s 
performance23. In open-ended scenarios, our model excelled with an 
84.3% accuracy, surpassing M2I2’s 74.7%. However, for the VQA-RAD 
and PathVQA datasets, BiomedGPT’s performance on open-ended 
queries was less competitive, recording accuracies of 60.9% and 28.0%, 
respectively.

In addition, we compared BiomedGPT-B with Med-PaLM M  
(12 billion parameters) using the weighted F1 score, as reported in 
the paper6. Other metrics could not be calculated owing to the 
closed-source nature of Med-PaLM M. Remarkably, despite its much 
smaller size, BiomedGPT-B achieved impressive results (Fig. 2b). On 
the VQA-RAD and SLAKE datasets, BiomedGPT-B attained scores of 
73.2% and 85.2%, respectively, which represent a substantial increase 
of 22.5% on VQA-RAD and a slight improvement of 0.02% on SLAKE. 
Additionally, on the PathVQA dataset, BiomedGPT-B had a weighted 
F1 score of 56.9%, only 0.4% lower than Med-PaLM M, while utilizing a 
model with 98.5% fewer parameters.

To evaluate the model’s image-captioning ability (Fig. 3b), we 
meticulously assessed the quality of machine-generated text using 
three metrics: recall-oriented understudy for gisting evaluation-longest 
common subsequence (ROUGE-L)26, metric for evaluation of transla-
tion with explicit ordering (METEOR)27 and consensus-based image 
description evaluation (CIDEr)28. We compared the performance of 
BiomedGPT to that of established models13,29–33. These evaluation  
metrics are useful for assessing the similarity and consensus between 
the generated text and the reference text written by medical experts. 
They have also shown some alignment with ratings given by physicians34. 
Consequently, models that score higher on these natural-language 
processing (NLP) metrics can be selected as candidates for further 
human evaluation35. On the Peir Gross dataset, our BiomedGPT model 
surpassed the existing SOTA benchmark36, demonstrating improve-
ments of 8.1 percentage points in ROUGE-L and 0.5 points in METEOR, 
and a substantial gain of 89.8 points in the CIDEr metric. Conversely, 
on the IU X-ray dataset, BiomedGPT achieved a leading CIDEr score  

applications, in which the integration of diverse data types—such as 
clinical text and radiographic imaging—is crucial for accurate analysis 
and decision-making. Furthermore, generalist models exhibit impres-
sive multitasking capabilities, greatly simplifying the deployment and 
management of AI systems by reducing the need to maintain numerous 
narrowly focused specialist models.

In this paper, we introduce BiomedGPT, a prototype for a general-
ist vision–language foundation model designed to perform diverse 
biomedical tasks across modalities using natural-language instructions 
(Fig. 1). Unlike multimodal biomedical AI systems that are specialized 
for a single task12, focused solely on one discipline13 or not publicly 
accessible6, BiomedGPT is trained with cross-disciplinary data and 
evaluated on a wide range of tasks. BiomedGPT is fully transparent, 
open-source and lightweight (for example, it is 3,088 times smaller 
than the commercial generalist biomedical AI model Med-PaLM M, 
which has 562 billion parameters6), thereby facilitating broader imple-
mentation. To empower the generalist capabilities of BiomedGPT, 
we curated a large-scale pretraining corpus comprising 592,567 
images, approximately 183 million text sentences, 46,408 object–
label pairs and 271,804 image–text pairs (Fig. 2c,d). Furthermore, to 
enhance its ability to follow instructions, we developed a variant called 
Instruct-BiomedGPT with specifically curated instruction-tuning data 
(Supplementary Fig. 1).

To our knowledge, BiomedGPT is the first fully transparent  
generalist medical AI model that has been comprehensively evaluated 
on publicly accessible datasets and by medical professionals. This study 
first highlights the transfer-learning capabilities of BiomedGPT, dem-
onstrating how the model uses knowledge from pretraining to special-
ize effectively across 25 datasets through fine-tuning (Extended Data 
Tables 1 and 2 and Supplementary Table 7). We used recognized metrics 
from the literature to benchmark our model against state-of-the-art 
(SOTA) results. Additionally, BiomedGPT is a zero-shot learner that 
can answer multimodal medical questions without further training 
for adaptation, and its performance is comparable to that of leading 
AI systems. Furthermore, doctors evaluated BiomedGPT in tasks such 
as visual question answering (VQA), report generation and summari-
zation within the radiology domain, and it demonstrated satisfactory 
performance. Although our results highlight BiomedGPT’s potential 
in medical applications, they also indicate that substantial enhance-
ments are required to make it usable in the clinic. Critical evaluations 
for BiomedGPT are particularly needed in the areas of safety, equity and 
bias. Our findings underscore the challenges that must be addressed 
before these models can be deployed effectively in clinical settings. We 
outline these limitations and suggest directions for future research.

Results
Pretraining using large and diverse datasets
BiomedGPT uses pretraining techniques including masked modeling 
and supervised learning, aiming to establish robust and general data 
representations by learning from extensive datasets across diverse 
tasks (Extended Data Table 3). To maximize the generalization of 
BiomedGPT, we sourced the pretraining data from 14 freely available 
datasets, ensuring the diversity of modalities (Figs. 1a and 2c,d and 
Extended Data Fig. 1a). In addition, to investigate how BiomedGPT 
performs across scales, we specifically introduced three versions of 
the model: BiomedGPT-S, BiomedGPT-M and BiomedGPT-B, which 
correspond to small, medium and base sizes, respectively (Fig. 2a and 
Extended Data Figs. 2 and 3).

Fine-tuning for downstream tasks
Multitasking is fundamental to a generalist AI. Following previous bio-
medical research14–16 and aiming for sufficiently effective performance, 
we primarily fine-tuned our model to adapt to various biomedical tasks 
(Fig. 1b,c). Our selection of downstream tasks stemmed from their 
potential real-world applications: medical-image classification can 
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There is no evidence of hemorrhage, masses, mass effect or shift of
normally midline structures. The ventricles and sulci are mildly
prominent, compatible with age-appropriate involutional changes. There
is hypoattenuation along the right caudate head and periventricular
frontal white matter, unchanged, compatible with small vessel ischemic
disease.

The patient is a 44-year-old white female. She has one malignant tumor and
five regional lymph nodes that tested positive. The tumor measures 23
mm. Estrogen and progesterone receptor tests are positive. A total of
34 regional nodes were removed.

Chief complaint: Dyspnea, abdominal distention
Present illness: 78-year-old female with multiple medical problems,
pertinently including CAD status post CABG, hypertension and type 2 diabetes
Medical history: (1) CAD status post CABG [Reg#](2) Hypertension (3) Type 2
diabetes (4) Pulmonary fibrosis
Allergies: Patient recorded as having no known allergies to drugs
···
Physical exam: BP 107/68, HR 70s, RR 28, 90% on NRB

Q: What is seen at this stage,  associated with regeneration and repair?
A: Numerous reactive type II pneumocytes.
Q: Are bite cells like this one in the smear associated with regeneration and repair at this stage?
A: No.

I have been suffering from headache and general 
weakness and have been diagnosed with typhoid fever. 

VQA Captioning

Text 
summarization

Text 
understanding

Image 
classification

Pathology and
radiology

VQA

Report 
generation

Conversation
summarization

Report 
summarization

Treatment
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Publications
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Literature
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Pathology 
images

Clinical notes

Image
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Q: What are the findings based on the image?
A: The nasogastric tube is in adequate position, and there is a resolution of the gastric distention. 
There is still mild bibasilar atelectasis. There are no pneumothorax no pleural effusion.

Q: What disease does this 
image depict?
A: Breast cancer.

Q: What skin lesion does this 
image depict?
A: Melanoma.

PR StatusER Status…Nodes 
examined

Tumor 
sizeRaceSexAgeID

NegativeNegative1425WhiteFemale54001
PositivePositive3423WhiteFemale44002
PositivePositive…322WhiteMale47003
PositiveNegative117WhiteFemale89004
NegativePositive1936WhiteFemale59005

Q: What is the predicted outcome for the patient before discharge?
A: Deceased.

Q: Please provide treatment suggestion given the patient's information.
A: Recommend using beam radiation, suggesting that the sequence for radiation 
should be post-surgery. Furthermore, chemotherapy should indeed be considered.

Q: What is summary based on the given report?
A: 1. No acute intracranial process. 

2. Small vessel ischemic disease.

Q: What is the summary of conversation?
A: Suggest remedy for recurred symptoms of typhoid after treatment.

What symptoms are you experiencing?

It seems you are having relapse of typhoid fever. Up to 10% 
of patients develop mild relapse. You need more tests to check 
for other causes, including liver tests, because your urine is 
dark, and hepatitis can sometimes happen with typhoid fever.

What treatments have you undergone in the past?

I was put on siprofloxacin for ten days. One week after 
I completed the course, I started having the same problems.

Pathology and radiology VQA

Treatment suggestion

Report generation

Conversation summarization

Report summarization

Lesion detection

Disease diagnosis

Multimodal data

a b

c

Q: Please determine the patient’s eligibility by comparing the given patient note and trial details.
A: The patient is eligible for the clinical trial.

Clinical-trial
matching

Mortality prediction

Clinical-trial matching

Clinical trial information

Description: Evaluate the safety and efficacy of Androxal.

Inclusion criteria: Total serum testosterone concentrations < 300 ng dl
–1
.

Male patients over the age of 18.

Exclusion criteria: Elevated PSA > 3.5 ng ml
–1
.

Patient information

A 19-year-old male came to the clinic with some sexual concerns. On 

physical examination, there are some poorly developed secondary sexual 

characteristics. Ultrasound reveals a testes volume of 1-2 ml. The 

hormonal evaluation showed a serum testosterone level of 65 ng dl
–1
with low 

levels of GnRH.

Fig. 1 | BiomedGPT can process diverse modalities and perform versatile 
tasks. a, BiomedGPT focuses primarily on visual and textual inputs, but can also 
process tabular data through serialization. CT, computed tomography; EHR, 
electronic health records; EKG, electrocardiogram; MRI, magnetic resonance 
imaging. b, Examples of the supported downstream visual-language tasks of 
BiomedGPT demonstrate its versatility. Additional tasks can be incorporated 
to meet further clinical needs through lightweight, task-specific fine-tuning. 
c, Examples of clinically relevant use-cases for BiomedGPT include tasks in 

which the input consists of both image and text or only text; the model responds 
to queries (Q) by generating responses (A). Thanks to its unified framework 
design and comprehensive pretraining on biomedical data, BiomedGPT is 
highly adaptable and can be applied to a variety of downstream tasks. BP, blood 
pressure; CABG, coronary artery bypass graft surgery; CAD, coronary artery 
disease; ER, estrogen receptor; GnRH, gonadotropin-releasing hormone;  
HR, heart rate; NRB, non-rebreather mask; PR, progesterone receptor;  
RR, respiratory rate; Reg#, de-identified ‘Medical Record Number’.
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3D biomedical image

3D image 
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Fig. 2 | An overview of BiomedGPT: workflow, performance and pretraining 
datasets. a, Illustration of how BiomedGPT handles multimodal inputs 
and performs diverse downstream tasks. The expected form of output for 
each task is determined by feeding the specific instruction to the model. 
2D, two-dimensional. b, Comparative performance analysis contrasting the 
achievements of BiomedGPT with prior SOTA results and Med-PaLM M (12 billion 
parameters). The evaluation metrics include accuracy for image classification, 
medical language inference and VQA (benchmarked against SOTA results); CIDEr 
for image captioning; ROUGE-L for text summarization; weighted F1 scores 

for VQA (in comparison with Med-PaLM M); and F1-macro for breast mass and 
calcification classification (also in comparison with Med-PaLM M). c, Distribution 
of pretraining datasets including image captioning and VQA as vision and 
language datasets, object-detection datasets and image-only datasets for 
masked image modeling. d, Density plot of the number of words per sentence in 
the text-only pretraining datasets. e, A comparison of scale-related performance. 
BiomedGPT exhibits superior performance on the SLAKE VQA dataset, although 
it has considerably fewer parameters than its counterparts. B, billion; M, million.
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Fig. 3 | BiomedGPT performs fine-tuning for vision–language and medical-
image-classification downstream tasks. a, Medical VQA performance of 
BiomedGPT and the leading models, in terms of closed-ended and open-ended 
accuracies. The information in parentheses indicates the performance change 
compared to BiomedGPT-B. × denotes the multiple of the parameter size of 
other models relative to that of our model. ↓ denotes the performance decrease 
compared to our model. ↑ denotes the performance increase compared to our 
model. For example, 0.5↓ means that the corresponding model has 0.5 lower 
accuracy than BiomedGPT-B. b, Image-captioning performance of BiomedGPT 

and SOTA platforms on IU X-ray, Peir Gross and MIMIC-CXR data. The evaluation 
metrics are ROUGE-L, METEOR and CIDEr. c, Evaluation of image classification 
on the MedMNIST-Raw dataset for each domain type. d, Image-classification 
performance with accuracy across two super-resolution image datasets.  
e, Image-classification performance as assessed by the F1-macro on the CBIS-
DDSM dataset. f, Accuracies across nine datasets with different resolutions 
(shown on the graph, in pixels) vary with model scale. In general, larger models 
tend to perform better.
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of 40.1, marking a 5.0-point improvement over the SOTA model31.  
On the MIMIC-CXR dataset, in terms of METEOR, our model recorded 
a score of 15.9%, surpassing the previous leading result30.

BiomedGPT enables accurate medical-image classification
For the medical-image-classification task, we curated a biomedical 
image dataset, named MedMNIST-Raw, encompassing seven modali-
ties following ref. 37: (1) colon pathology with nine tissue types;  
(2) dermoscopy images of seven typical pigmented skin lesions;  
(3) breast ultrasound (normal, benign and malignant); (4) retinal  
optical coherence tomography (OCT) categorized into four types of 
retinal diseases; (5) CXR images for binary-class classification of pneu-
monia against normal; (6) blood cell microscope showcasing eight 
kinds of normal cells; and (7) abdominal computed tomography (CT) 
with 11 body organs across the coronal view. Additionally, we tested the 
model on two super-resolution pulmonary disease datasets, with a spe-
cific focus on pulmonary tuberculosis (TB), which has a limited number 
of samples: (8) the Montgomery County CXR set (MC-CXR), with dimen-
sions of either 4,020 × 4,892 or 4,892 × 4,020 pixels; and (9) the Shenz-
hen CXR set (SZ-CXR), with approximate dimensions of 3,000 × 3,000 
pixels. To be consistent with prior works, we used accuracy for evalu-
ation. As shown in Figure 3c–e, BiomedGPT outperformed previous 
SOTA systems on seven of the nine biomedicalimage-classification 
datasets after five-epoch fine-tuning.

Notably, on the SZ-CXR and MC-CXR datasets38 (binary classi-
fication), BiomedGPT had accuracies of 97.0% and 89.7%, reflecting 
improvements of 6.0% and 0.8%, respectively, over the previously 
leading model, LightTBNet39 (Fig. 3d). For MedMNIST-Raw, we selected 
two top-performing approaches on biomedical imaging analysis,  
MedViT (Large)40 and BiomedCLIP15, as benchmarks for compari-
son. For BiomedCLIP, we added a decision layer and fine-tuned the 
entire model. BiomedGPT achieved 5 out of 7 best accuracies on 
MedMNIST-Raw (Fig. 3c): for example, on the dermoscopy dataset, 
BiomedGPT surpassed the two baseline models by more than 14%. On 
average, BiomedGPT achieved performance improvements of 6.1% and 
3.3% over MedViT and BiomedCLIP, respectively.

BiomedGPT exhibits performance enhancements as its scale 
increases (Fig. 3f). Specifically, on the MC-CXR dataset, the small model 
had an accuracy of 75.9%. By contrast, the medium model had a score of 
82.8%, which is 6.9% higher than its smaller counterpart’s performance. 
The base model continued this upward trajectory, with a score of 89.7%, 
surpassing the medium model by 6.9%. However, we also observed 
performance saturation on several datasets, such as SZ-CXR. We also 
tested the extreme situation in which the images were resized to a very 
small scale and found that performance saturation became much more 
pronounced (Supplementary Table 1).

Additionally, we benchmarked BiomedGPT against Med-PaLM M 
on the Curated Breast Imaging Subset of Digital Database for Screening 
Mammography (CBIS-DDSM) dataset41 for both three-class lesion-level 
mass classification and calcification classification. Using the 
macro-averaged F1 score (F1-macro) as the evaluation metric, consist-
ent with how Med-PaLM M was evaluated, we found that BiomedGPT-B 
outperforms all versions of Med-PaLM M, spanning 12 billion, 84 billion  
and 584 billion parameters (Fig. 3e and Extended Data Fig. 4a). 
These findings underscore the impressive efficiency and efficacy of 
BiomedGPT, even relative to models with larger scales.

BiomedGPT understands and summarizes clinical text
We assessed BiomedGPT’s proficiency in understanding and condens-
ing complex medical narratives that hold potential for addressing 
real-world clinical needs: (1) medical natural-language inference, using 
the MedNLI dataset42, which tests the model’s comprehension in deduc-
ing hypotheses from provided premises; (2) treatment suggestions 
for radiation therapy and chemotherapy based on the Surveillance,  
Epidemiology, and End Results (SEER) dataset43; (3) in-hospital mortality 

prediction on the basis of admission notes; and (4) clinical-trial match-
ing that identifies lists of candidate clinical trials suitable for individuals.  
Moreover, we explored BiomedGPT’s performance in medical-text 
summarization, which was applied to datasets of doctor–patient 
dialogues (MedQSum44 and HealthCareMagic45) as well as radiology 
reports (MIMIC-CXR21 and MIMIC-III46).

While evaluating the MedNLI dataset for three-class classifica-
tion (entailment, contradiction or neutral), we used accuracy as our 
evaluation metric, consistent with prior research (Fig. 4e). Notably, 
when compared with the SOTA performance of SciFive-Large16 at 86.6% 
accuracy, BiomedGPT-B, which has merely a quarter of SciFive-Large’s 
parameter count, exhibited a decline in accuracy of only 2.8%.

For the treatment-suggestion task, we adopted the preprocess-
ing steps as described in prior work47. An example output is: ‘Recom-
mend using beam radiation, suggesting that the sequence for radiation 
should be post-surgery. Furthermore, chemotherapy should indeed 
be considered.’ To evaluate the effectiveness of three variants in treat-
ment suggestions, we used a tenfold cross-validation method and 
compared current open-source SOTA methods, including BioGPT14 and 
LLaVA-Med12 (Fig. 4a), which have 347 million and 7 billion parameters, 
respectively—approximately 11 and 212 times larger, respectively, than 
BiomedGPT-S. BiomedGPT-B achieved a mean accuracy of 50.0% ± 
5.3%, outperforming BioGPT and LLaVA-Med, which had accuracies 
of 45.9% ± 4.8% and 41.5% ± 7.1%, respectively. Considering the com-
plexity involved with six types of radiation therapy, seven radiation 
sequences and two types of chemotherapy47, which together imply a 
random-guess accuracy of 1.2%, both BiomedGPTs and the baseline 
models have much higher accuracies than this baseline.

For the clinical-trial matching task, we collected a dataset from 
Text Retrieval Conference (TREC) 202248, categorized into three 
groups: eligible, irrelevant and ineligible. We randomly chose 80% of 
the data from each group as the training set and the remaining 20% 
as the test set, and reported the average results across 10 repetitions. 
Again, all three versions of BiomedGPT outperformed the baselines 
(Fig. 4b). In particular, BiomedGPT-B achieved a mean accuracy of 
85.2% ± 1.5%, substantially outperforming BioGPT and LLaVA-Med, 
which had accuracies of 42.0 % ± 1.8% and 48.7% ± 2.4%, respectively.

To assess BiomedGPT’s performance in predicting in-hospital 
mortality, we used admission notes extracted from the MIMIC-III data-
base, following ref. 49, with the official test set. Figure 4c presents the 
prediction-accuracy results for five models, demonstrating that all 
three versions of BiomedGPT outperformed BioGPT and LLaVA-Med. 
Notably, BiomedGPT-B achieved an accuracy improvement of more 
than 15% compared with these two baselines.

We used the ROUGE-L metric to assess BiomedGPT-B’s 
text-summarization performance across four benchmark data-
sets (Fig. 4d). BiomedGPT-B demonstrated its ability to summarize 
doctor–patient dialogues on the MedQSum and HealthCareMagic 
datasets, achieving ROUGE-L scores of 52.3% and 42%, respectively. 
Leading models32, with 400 million parameters (at least twice as large 
as BiomedGPT-B), recorded ROUGE-L scores of 53.2% and 44.7%, 
BiomedGPT-B showed only minor performance drops of 0.9% and 
2.7%. Additionally, in summarizing radiology reports, and specifically 
in generating impressions from radiologists’ findings, BiomedGPT-B 
achieved a ROUGE-L score of 44.4% on the MIMIC-CXR dataset. This 
result is closely aligned with the performance of the SOTA model, trail-
ing by a mere 0.1% from the top score of 44.5%33. In the MIMIC-III dataset, 
BiomedGPT-B’s performance stood out with a ROUGE-L score of 30.7%, 
surpassing Med-PaLM M (12 billion parameter), which scored 29.5%.

BiomedGPT can perform zero-shot prediction on new data
We focused on evaluating the zero-shot capabilities of BiomedGPT 
in VQA, highlighting its ability to answer biomedical questions in a 
freeform manner at scale, without requiring retraining. This contrasts 
sharply with earlier biomedical AI models, such as bidirectional encoder 
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Fig. 4 | BiomedGPT performs few-epoch transfer learning for clinical-text 
understanding and summarization and generates a response through zero-
shot transfer learning. a, Evaluation of models for the treatment-suggestion 
task in terms of accuracy using tenfold cross-validation (n = 4,680 data samples). 
b, Comparison of performance, assessed using accuracy, on the patient–trial 
matching dataset, derived from the TREC 2022 dataset, using tenfold cross-
validation (n = 7079 data samples). c, Accuracy across three BiomedGPT 
variants and two SOTA models, BioGPT and LLaVA-Med, for in-hospital mortality 

prediction. d, ROUGE-L scores across four text-summarization datasets, relative 
to model scale. e, Medical language inference performance on the MedNLI 
dataset. f, Comparison of zero-shot question-alignment accuracy among Instruct-
BiomedGPTs (base, medium, small), BiomedGPTs, OFAs (large, huge), LLaVA-Med 
and GPT-4V. An example illustrating a mismatch between the generated answer 
and the question is shown. g, Average zero-shot accuracy across seven question 
types on the VQA-RAD dataset. h, Overall zero-shot learning performance on the 
VQA-RAD dataset over 50 repeated samplings (n = 39 data samples).
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representations from transformers (BERT)-based or vision transformer 
(ViT)-based models40, which are incapable of zero-shot prediction,  
or contrast language–image pretraining (CLIP)-based models15,  
which require predefined answers (Extended Data Fig. 5a). Unlike these 
models, BiomedGPT can generate answers by simply processing the 
input data, offering more flexible and dynamic AI-driven solutions for 
biomedical inquiries. In addition to medical VQA, BiomedGPT show-
cased zero-shot capabilities in disease diagnosis and X-ray report gen-
eration, matching the performance of Med-PaLM M and LLaVA-Med 
(Extended Data Fig. 5b,c).

We used the VQA-RAD dataset18 (which was absent from the pre-
training data) for evaluation, through 50 random samplings. Our eval-
uation of BiomedGPT’s performance centered on two key metrics:  
(1) the accuracy of the model in providing correct answers, and (2) its 
ability to understand the questions and respond in a contextually rele
vant way, measured as alignment accuracy. We noted low alignment 
accuracy, indicating poor question comprehension, by our pretrained 
models (Fig. 4f). To address this, we developed Instruct-BiomedGPT 
which was fine-tuned using instruction-tuning data (Supplementary 
Fig. 1). We assessed this model against current SOTA models, including  
GPT-4V50, LLaVA-Med (7B)12, OFA-Huge (930 million parameters) and 
OFA-Large (470 million parameters)51 in a zero-shot setting, analyz-
ing various question types (Extended Data Table 4). Specifically, 
Instruct-BiomedGPT-B achieved a zero-shot accuracy of 54.7% ± 5.7%, 
surpassing GPT-4V’s 53.0% ± 6.7% (Fig. 4h). Despite this improvement 
in understanding medical questions, neither model reached clinically 
acceptable performance. For example, the current top-performing 
medical vision–language model, LLaVA-Med, achieved accuracies 
of only 42.0% and 40.6% in disease diagnosis and lesion detection, 
respectively (Fig. 4g). Although Instruct-BiomedGPT-B showed a more  
than 10% improvement over LLaVA-Med, accuracies remained under 
60%. These results highlight the complexity of diagnosis and the need 
for ongoing fine-tuning in the development of visual-language bio-
medical AI.

Regarding alignment accuracy, GPT-4V and LLaVA-Med out
performed the other models (Fig. 4f); specifically, they achieved impres-
sive scores of 99.5% ± 1.1% and 98.2% ± 2.0%, respectively, likely owing to the 
advanced large language models on which they are built10,11. The marked 
improvement in alignment accuracy between Instruct-BiomedGPT  
and the pretrained BiomedGPT exemplifies the effectiveness of  
instruction tuning in enhancing the model’s capability to follow  
instructions accurately. For instance, BiomedGPT-B achieved a mean 
alignment accuracy of 79.2%, but Instruct-BiomedGPT-B reached 95%.

Human evaluation of BiomedGPT for radiology tasks
To evaluate the clinical applicability and deployment challenges of 
BiomedGPT, we conducted a series of analyses through radiologist 
evaluations of the model’s generated responses to a wide range of 
tasks, including VQA, report generation and report summarization 
in radiology. Examples of human evaluation on these three tasks in 
terms of response factuality, omissions and severity of the errors are 
shown in Figure 5a. The detailed evaluation procedure and performance 
analysis are as follows.

Radiology VQA. To clinically evaluate the correctness of BiomedGPT’s 
responses, we randomly selected 52 question–answer samples from 
16 images in the official test set of MIMIC-Diff-VQA52 over 6 catego-
ries (Supplementary Table 2): abnormality, presence, location, type,  
view and severity level. For a fair comparison, we collected the  
answers generated by BiomedGPT, LLaVA-Med after fine-tuning 
and GPT-4V (zero-shot). The generated answers were presented to a 
seasoned radiologist at Massachusetts General Hospital for scoring 
(Fig. 5b,c). The answers were categorized as correct, partially cor-
rect, incorrect or unrelated, and were assigned scores of 2, 1, 0 and −1, 
respectively. Additionally, the original radiology reports were provided 

to the radiologist to serve as a reference, potentially facilitating a more 
precise evaluation.

BiomedGPT achieved an average score of 1.75 across all 52 sam-
ples, accumulating a total score of 91. In comparison, GPT-4V and 
LLaVA-Med attained average scores of 1.17 and 1.4, resulting in total 
scores of 61 and 73, respectively. BiomedGPT demonstrated superior 
performance in four out of five question categories. In addition, despite 
the radiologist identifying some errors in the sampled gold labels from 
MIMIC-Diff-VQA, we conducted a comparison using an exact match 
score based on these labels across the test set with non-difference ques-
tions. In this evaluation, BiomedGPT-B showed the best performance 
(Supplementary Table 3).

Radiology report generation. This task’s complexity arises from 
the need for long-form outputs that provide detailed descriptions of 
various aspects, such as the presence, location and severity of abnor-
malities. In this study, we randomly selected 30 sample image–report 
pairs from the MIMIC-CXR dataset21. We then applied BiomedGPT-B 
and BiomedGPT-M to generate the ‘findings’ section of the radiology 
report based on the input CXR image. The radiologist assessed the 
quality of the generated text by addressing several aspects. First, they 
identified any disagreements with the generated report, such as incor-
rect finding locations, incorrect severity levels, references to views 
not present or mentions of prior studies that do not exist. Second, the 
radiologist determined whether the errors in the generated report 
are critical, with the options being critical, noncritical or N/A if more 
information is needed. Third, they pinpointed any omissions in the 
generated text. Finally, the radiologist judged whether the omissions 
are clinically critical.

In the evaluation, we focused on finding-level metrics, in which 
the generated text would be split into individual findings. For instance, 
the report ‘PA and lateral views of the chest provided. Cardiomegaly is 
again noted with mild pulmonary edema. No large effusion or pneumo-
thorax.’ consists of three findings. To clearly demonstrate the quality 
of the generated findings, we quantified the error rates and omission 
rates (Fig. 5d). In the analysis of 192 generated findings, BiomedGPT-B 
achieved a rate of ‘critical error’ of 8.3%, whereas BiomedGPT-M 
exhibited a rate of 11.0% (excluding one case that required additional 
information for a comprehensive impact assessment). These rates are 
comparable to the human observer variabilities on the MIMIC-CXR, 
which has an error rate of approximately 6%53. We also reported the 
rate of ‘harmless error’; BiomedGPT-B and BiomedGPT-M achieved 
5.2% and 11.5%, respectively. Our observations included an analysis of 
254 findings from the reference report to calculate the omission rates. 
The total omission rates for BiomedGPT-B and BiomedGPT-M were 
23.3% and 23.5%, respectively. Because not all findings described in 
the reference are clinically necessary, our analysis primarily focused 
on critical omissions; BiomedGPT-B and BiomedGPT-M had similar 
rates, of 7.0% and 6.9%, respectively.

Radiology report summarization. We evaluated 100 summaries gener-
ated by BiomedGPT-B based on findings from MIMIC-CXR data21, along-
side the ‘Impression’ sections of corresponding reference reports. 
Our evaluation focused on completeness, correctness and potential 
medically adverse effects due to any omissions or incorrect interpreta-
tions (Fig. 5a). Completeness is rated from 1 (very incomplete) to 5 (very 
complete), with 3 representing a borderline (neutral) encapsulation. 
Accuracy is assessed by how well the content reflects the clinical impli-
cations for the patient, rated from 1 (very incorrect) to 5 (very correct). 
The potential for medically adverse effects from errors is classified as 
‘no harm’, ‘mild’ or ‘severe’, on the basis of their clinical impact. Finally, 
we compared which summary, generated or referenced, better encap-
sulated all clinically relevant information, providing a comprehensive 
comparison of AI-generated summaries with traditional radiology 
reports in terms of relevance, accuracy and safety.
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BiomedGPT-generated summaries generally exhibit higher com-
pleteness (Fig. 5e), achieving average completeness (score > 3) in 81.0% 
of cases, 15.0% higher than the reference summaries. Additionally, only 

5% of BiomedGPT-generated summaries are considered incomplete 
(score < 3), compared with 4% for the reference summaries. Despite 
these findings, the average completeness score for BiomedGPT is 

There is a right pleural effusion, the size of which is difficult to 
ascertain. There is unchanged bilateral lower lobe and right 
middle lobe collapse. The small left pleural effusion is unchanged. 
There is no pulmonary vascular congestion or pneumothorax. The 
cardiac and mediastinal contours are not well visualized.

A large right pleural effusion is increased from with associated 
compressive atelectasis. A small left pleural fluid is also increased 
from __. The left lung is clear. The heart and mediastinum cannot 
be accurately assessed on this projection. (No mention of changes 
in lobe collapse or new findings of congestion and pneumothorax.)

Right pleural effusion, no pulmonary congestion or 
pneumothorax, unclear cardiac and mediastinal outlines.

Q: What abnormalities are seen in the image?
A: Pleural effusion, bilateral lower lobe collapse, right 
middle lobe collapse, unclear cardiac and mediastinal 
outlines.
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Fig. 5 | Human evaluation of the VQA, text-summarization and captioning 
tasks. a, Examples of human evaluation for three tasks in terms of response 
factuality, omissions and severity of the errors. In the given X-ray image,  
L indicates the left side of the patient’s body; the ‘O’ is not a letter but the imaging 
of a foreign object either inside or outside the subject’s body. b, Comparison of 
performance between three models across six question categories for radiology 
VQA. c, Average answer score for radiology VQA. d, Error and omission rates of 

BiomedGPT-B and BiomedGPT-M in the generated radiology report. e, Human 
evaluation of report summarization considers three attributes: completeness, 
correctness and potential harm, with the radiologist’s preference. Specifically, 
in all comparison pairs (reference summary from the medical expert and the 
BiomedGPT-generated summary, the radiologist evaluator prefer the reference 
summary in 52% of cases. For the remaining 48% of the cases, the evaluator think 
the BiomedGPT-generated summary is better.).
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slightly lower at 3.9, versus 4.0 for reference summaries, with no sig-
nificant difference (P > 0.05). BiomedGPT also had a higher correctness 
rate, with 90.0% of its summaries scoring above 3, compared with 86.0% 

for the reference impressions. The Wilcoxon rank-sum test showed no 
significant difference (P > 0.05) in average correctness scores between 
BiomedGPT and the reference summaries, both averaging 4.4 out of 5.  
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Fig. 6 | Results of the ablation study on the impact of diversity of pretraining 
datasets and tasks and a graphical demonstration of BiomedGPT’s 
design. a, Performance comparison excluding the specific task. The metrics 
used are accuracy for radiology VQA, medical language inference and image 
classification; CIDEr for radiology captioning; and ROUGE-L for medical-
question summarization. Pretraining without using masked image modeling, 
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In addition, our analysis found that 6.0% of BiomedGPT-generated 
summaries contained medically adverse items, categorized as either 
‘mild’ or ‘severe’, which is identical to the rate observed in the refer-
ence impressions. This indicates that BiomedGPT has comparable 
performance to human experts in summarizing radiology reports, 
particularly in terms of assessing medical safety. Notably, there was 
one instance of a ‘severe’ adverse effect identified in the reference 
impressions, with no such cases found in the BiomedGPT-generated 
summaries. The overall score of summaries generated by BiomedGPT 
closely matches the score of those produced by the reference, with 
preference scores of 48% for BiomedGPT and 52% for the reference 
(Fig. 5e). The results of the Sign test (P > 0.05) indicate that there is 
no significant preference for either system, suggesting comparable 
performance in delivering quality and safety in medical summarization.

Discussion
In this study, we have shown that BiomedGPT can achieve competitive 
transfer-learning performance across vision, language and multimodal 
domains by integrating diverse biomedical modalities and tasks within 
a unified pretraining framework. However, the experimental results 
also revealed limitations, offering insights for potential improvement.

The development of AI critically depends on the availability 
of high-quality, annotated data. This requirement poses a unique 
challenge in the biomedical domain, in which data annotation is 
expensive, time-consuming and demands extensive domain exper-
tise54. Consequently, AI researchers often resort to public datasets, 
which can compromise data quality. When dealing with multimodal 
biomedical datasets, particularly image–text pairs, issues become 
more pronounced: (1) most existing datasets focus primarily on radi-
ology, leading to a substantial modality imbalance; and (2) the scale 
of images with detailed annotation is still limited in comparison with 
unlabeled or weakly-labeled biomedical images and accessible bio-
medical articles from PubMed or PubMed Central. In our study, we 
considered diverse modalities and ensured that the data scale is suf-
ficient to train high-performance models. As more biomedical data are 
curated and made open source, we can obtain better visual–semantic 
mappings (Fig. 6).

Evaluating the quality of generated text presents considerable 
challenges. Although metrics such as CIDEr and ROUGE-L can meas-
ure the agreement between generated content and a gold standard, 
and are commonly used for model selection to further assess clini-
cal applicability35, ensuring the factual accuracy of these outputs 
remains a concern. To address this, recent research has introduced 
the F1-RadGraph score55, which qualitatively assesses the factual cor-
rectness and completeness of generated reports. In other domains, 
such as pathology, similar evaluation metrics are not yet prevalent. 
We anticipate the emergence of analogous metrics for these domains 
that draw inspiration from factual-concerned metrics developed in 
radiology56. These would further enhance our ability to measure the 
factual integrity and overall quality of AI-generated medical content 
across various biomedical fields.

BiomedGPT is currently adept in processing images and text, 
and its capabilities could potentially be extended to other types of 
biomedical data, such as video and time-series or sequential data. 
For instance, we demonstrated how BiomedGPT can be extended 
to handle three-dimensional (3D) images by introducing a 3D image 
encoder into the framework (Extended Data Table 5 and Supplemen-
tary Table 4). Nevertheless, these expansions raise concerns about 
negative transfer, in which learning from additional modalities might 
inadvertently hamper performance on certain tasks. For instance, 
our ablation study revealed that excluding image data during pre-
training improves performance on language-only downstream tasks 
(Fig. 6a), highlighting the risk of negative transfer. To mitigate this, 
we propose exploring controllable learning strategies, such as the 
mixture of experts57.

Evidence from our comprehensive analysis (Figs. 3a,b,f and 4a–e,h)  
indicates a direct correlation between increased model scale and 
enhanced performance, applicable to both zero-shot predictions and 
post-fine-tuning. However, scaling brings its own set of challenges, par-
ticularly concerning fine-tuning efficiency, training speed and memory 
requirements. We have tried to address the efficiency challenges of 
BiomedGPT by exploring prompt tuning, which adds small-scale para
meters to condition-frozen models56. However, this method incurred 
large performance degradation (Extended Data Fig. 4b).

Our zero-shot transfer-learning tests (Fig. 4f–h) indicated that 
BiomedGPT’s text-comprehension capabilities, especially in compari-
son with those of GPT-4V, are not fully established. Two main factors 
contribute to this limitation: first, the current scale of BiomedGPT, 
particularly the language backbone, is limited by available resources, 
although it is expandable. Our preliminary observations indicate that, 
even if a model has seven billion parameters and effective training, 
achieving robust zero-shot in-context or text understanding remains 
challenging in complex medical applications. However, fine-tuning, 
even with a smaller-scale model such as BiomedGPT, proves to be a 
promising approach to mitigate risks (Supplementary Fig. 3). Second, 
the use of a single encoder that handles multiple input types compli-
cates the separation of diverse modality representations, requiring 
more refined training strategies.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
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Methods
BiomedGPT is a transformer-based architecture specifically designed 
for the biomedical field, built on the success of existing unified models  
for general data. We follow the fundamental principles of a unified 
model51: (1) modality-agnostic, (2) task-agnostic and (3) modality 
and task comprehensiveness. By discretizing data into patches or 
tokens, we achieve input–output unification using ideas from ViT58 and  
language models10,11.

BiomedGPT architecture
There are three principal architectures among pretrained founda-
tion models: encoder-only, decoder-only and encoder–decoder. 
Encoder-only models, such as BERT and its variants59, primarily use 
the transformer’s encoder to learn representations of input data, and 
require additional modules, such classification heads or task-specific 
decoders, during fine-tuning. This architecture may struggle with align-
ing inputs and outputs across distinctly different modalities, limiting 
its capability in complex zero-shot prediction or generation tasks. 
Conversely, decoder-only models, exemplified by GPT10, rely solely on 
the transformer’s decoder to process raw text inputs. Although profi-
cient in text-based tasks, their architecture is not inherently equipped 
to handle multiple modalities, often leading to challenges in learning 
joint representations across diverse data types. This can diminish flex-
ibility and performance in multimodal tasks, particularly in biomedical 
applications. Therefore, we selected the encoder–decoder architecture 
to design BiomedGPT, which is more adept at mapping various modali-
ties into a unified semantic representation space, thereby enhancing 
task handling across a broader spectrum.

BiomedGPT is implemented with a BERT-style encoder59 over 
corrupted text and a GPT-style left-to-right autoregressive decoder10. 
All these models rely on the transformer with the popular multi-head 
attention mechanism (Extended Data Fig. 3a), which allows the model 
to jointly attend to the information from different representation 
sub-spaces60. To improve the convergence efficiency and stability in 
the pretraining, we added three normalization operations to each layer: 
a post-attention Layer Norm (LN)61, post-first-FFN LN and head-wise 
scaling within self-attention (Extended Data Fig. 2b), following ref. 62. 
To encode positional information, we incorporated two sets of absolute 
position embeddings for both text and images. Rather than merely 
combining these embeddings with token and patch embeddings, we 
implemented a decoupling method to separate position correlation 
(Extended Data Fig. 3b), which could bring unnecessary randomness 
in the attention and further limit the expressiveness of the model60. 
Furthermore, we also incorporated one-dimensional relative posi-
tion bias for text and 2D relative position bias for image (Extended 
Data Fig. 3c), as described in previous works63,64. To investigate the 
performance of BiomedGPT for tasks at different scales, we explicitly 
designed three scaling models, that is, BiomedGPT-S (33 million param-
eters), BiomedGPT-M (93 million parameters) and BiomedGPT-B (182 
million parameters). The configurations for each model are detailed 
in Extended Data Figure 2a.

Unifying input–output
To handle diverse modalities without relying on task-specific output 
structures, we represented them as tokens drawn from a unified and 
finite vocabulary (Fig. 6d). To achieve this, we used frozen image quan-
tization65 and object descriptor66 to discretize images and objects, 
respectively, on the target side. We encoded text outputs, including 
object labels and summarizations, using BPE tokens67. Specifically, 
an image with a resolution of 256 × 256 pixels is sparsely encoded into 
a sequence of 16 × 16 pixels, which correlates strongly with the cor-
responding patch and can effectively reduce the sequence length of  
the image representation. The bounding boxes of objects in  
an image are expressed as sequences of location tokens in the  
format of integers. We thereby built a unified vocabulary for all 

tokens of multimodal outputs. The total vocabulary size is 59,457 
tokens, including 50,265 language tokens, 1,000 location tokens and 
8,192 vision tokens. The number of vision tokens was determined by  
the variant of the pretrained VQ-GAN models used in BiomedGPT;  
specifically, we used the variant with a patch size of 8 and vocabulary 
size of 8,192. During training, we randomly subsampled 196 image 
patches for pretraining. The maximum model input length is trun-
cated to 512.

Ablation study on modality comprehensiveness. Additional evalu-
ations were conducted to address the query: ‘Can the proposed model 
handle unseen data modalities (for example, images from a new dif-
ferent imaging device like an ultrasound)?’ To investigate this, we 
adjusted our dataset selection for both pretraining and downstream 
tasks (Supplementary Fig. 2b). Specifically, we used all 3,489 and 
6,461 CXR image–text pairs from the SLAKE and IU X-ray datasets, 
respectively. Additionally, we randomly selected 7,452 images from 
CheXpert while disabling MLM and OD during pretraining for sim-
plification (Supplementary Fig. 2a). The pretrained BiomedGPT on 
X-ray modality, denoted as RadGPT-{size}, was then fine-tuned on 
radiology datasets: CXR, breast ultrasound and liver CT (coronal view). 
As a comparative baseline, we selected ResNet-50 (ref. 68), which was 
trained from scratch on these three datasets. We observed impressive 
in-domain transferability of BiomedGPT from the outcome (Fig. 6c): 
RadGPT-B outperformed the baseline, achieving 93.0% classification 
accuracy on the CXR images, a 7.6% improvement. However, for liver 
CT scans, we had to scale up the model to attain comparable results 
to the baseline. This highlights the challenges in domain adaptation 
for medical applications when the pretrained model does not learn 
diverse medical knowledge.

We further explored the aspect of cross-domain transferability 
(Fig. 6b). Specifically, we fine-tuned the aforementioned pretrained 
model, RadGPT, using datasets from other domains, such as blood 
cell microscopy and dermoscopy, for image classification. Addition-
ally, we selected MRI-only and CT-only image–text pairs from SLAKE 
and conducted VQA fine-tuning. The results were compared with the 
benchmark (the original BiomedGPT-B pretrained with all modalities) 
and were measured in terms of accuracy. We found that cross-modality 
transfer with our model is feasible, albeit with potentially substantial 
performance degradation. For example, RadGPT-B exhibited a notable 
decrease in accuracy compared with the baseline on both the DermaM-
NIST dataset (dermoscopy), with an 8.1% drop, and the SLAKE-CT VQA 
dataset, with a more substantial reduction of 15.2%. Notably, we had to 
double the training epochs as compared with the previous fine-tuning 
with a pretrained model encompassing all modalities (100 versus 50). 
Therefore, we conclude that modality comprehensiveness is essential 
for a generalist biomedical AI model to facilitate efficient knowledge 
transfer.

Natural language as a task instructor
Multitasking is a key attribute of a unified and generalist model. Fol-
lowing the literature on language models using prompt and instruc-
tion learning10,69,70 and existing unified frameworks to eliminate 
task-specific modules, we defined each task with a custom instruc-
tion, excluding VQA tasks, which are fully specified by their text 
inputs. BiomedGPT supports abstractions of several tasks, including 
vision-only, text-only and vision–language, to achieve task comprehen-
siveness. We provide details of the pretraining tasks and fine-tuning 
and inference tasks, as well as their corresponding instructions, in the 
following sections.

Pretraining tasks. We considered two vision-only tasks in the pretrain-
ing process: for MIM as well as image infilling, we borrowed the idea of 
block-wise masking71 and let the model recover the masked patches in 
the middle part by generating the corresponding codes (see Fig. 6d). 
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The corresponding instruction is ‘What is the image in the middle part?’. 
For object detection, the model learns to generate the bounding box 
of an object with the instruction ‘What are the objects in the image?’. 
For the text-only task, we adopted the commonly used MLM), whose 
logic is similar to MIM but the instruction is ‘What is the complete text of 
‘{Text}’?’. Two types of multimodal tasks were selected, including image 
captioning with the instruction of ‘What does the image describe?’ 
and VQA with the instruction of ‘{Question}’. The addition of OD for 
pretraining BiomedGPT serves to enhance visual learning, inspired 
by ref. 72. The mixture of pretraining tasks is effective, especially for 
processing multimodal inputs (Fig. 6a).

Fine-tuning and downstream tasks. Besides image captioning and 
VQA used in pretraining, we covered one more vision-only task and 
two more text-only tasks. Specifically, we used the instruction ‘What 
does the image describe?’ to differentiate image classification. ‘What 
is the summary of text ‘{Text}’?’ and ‘Can text1 ‘{Text1}’ imply text2 
‘{Text2}’?’ were exploited for text summarization and natural-language 
inference, respectively.Notably, BiomedGPT is extendable, allowing for 
customization of instructions for specific downstream tasks (Fig. 1c 
and Supplementary Figs. 4–9).

Ablation study on task comprehensiveness. To gain a deeper 
understanding of the impact of individual pretraining tasks on down-
stream performance, we implemented an ablation study that excludes 
either image-only or text-only tasks during pretraining, followed by 
fine-tuning of the resultant models on five downstream tasks. To 
ensure a fair comparison, we utilized downstream datasets that were 
excluded from the pretraining phase: (1) PneumoniaMNIST36 for image 
classification; (2) ROCO (https://github.com/razorx89/roco-dataset) 
for image captioning; (3) VQA-RAD for VQA; (4) MeQSum for text 
summarization; and (5) MedNLI for text understanding. Moreover, 
each model was fine-tuned using consistent training receipts across 
the same datasets.

Owing to the limited computing resources, we performed this 
study using only BiomedGPT-S. Referring to Supplementary Figure 2c, 
we used the BiomedGPT-S model, pretrained with all tasks, as the 
baseline. We observed several empirical phenomena in this ablation 
study (Fig. 6a): (1) excluding the MIM component resulted in decreased 
performance in image-centric and multimodal tasks, such as image 
classification and VQA accuracy. Conversely, text-centric tasks showed 
improvement. These outcomes indicate that MIM is not crucial for 
text-only tasks, potentially explaining the enhancements in those areas. 
(2) When MLM was excluded during pretraining, performance declined 
across all tasks in downstream evaluation. Text-centric tasks were sub-
stantially impacted. These findings underscore the importance of MLM 
for unified models, even for image-only tasks that require text-token 
dictionaries for label generation. (3) Excluding object detection dur-
ing pretraining led to notable performance reductions in tasks such 
as image classification and radiology captioning. However, changes 
in performance for other datasets were relatively minor, likely owing 
to the limited number of object-detection samples and the weak con-
nection to language-only tasks. In summary, our study highlights the 
importance of task diversity in pretraining for the unified medical AI. 
Although the exclusion of image-specific tasks might benefit perfor-
mance on text-only tasks downstream, a varied task regime is essential 
for maintaining generalization across both unimodal and multimodal 
applications.

Model pretraining
We adopted sequence-to-sequence (seq2seq) learning73, which is  
a commonly used approach for large language models, to train our 
BiomedGPT. Formally, suppose we are given a sequence of tokens  
xi,b  as input, where i = 1,⋯ , I  indexes the tokens in a data sample  
and b = 1,⋯ ,B  indexes a sample in a training batch. Let a model be 

parametrized by θ. Then we autoregressively train the model by mini-
mizing the loss function Lθ:

Lθ(x1,1,⋯ ,xi,b)

= −
B
∑
b=1
log

I
∏
i=1

pθ(xi,b|x1,b,⋯ ,xi−1,b) = −
B
∑
b=1

I
∑
i=1
logpθ(xi,b|x<1,b).

In the context of BiomedGPT, x could refer to both linguistic and 
visual tokens in the pretraining tasks, including subwords, image codes 
and location tokens. Specifically, subwords were extracted by a BPE 
tokenizer, and we masked 15% of the tokens of the subwords in input 
in the MLM task, because these medical words show relatively high 
degrees of overlap. For the object-detection task, location tokens are 
generated following Pix2Seq66, conditioned on the observed pixel 
inputs. Data preprocessing was required for quantizing biomedi-
cal images using VQ-GAN67 owing to trivial semantics such as black 
backgrounds and the need to meet specific input size requirements. 
Therefore, we first removed the trivial background and cropped the 
image to the bounding box of the object of interest. We then resized 
the cropped image to 256 × 256 pixels and fed the center part, with a 
resolution of 128 × 128 pixels, into the pretrained VQ-GAN to generate 
the corresponding sparse image codes, which were the target output 
in masked image modeling task. Vision–language tasks followed the 
same tokenization flow. For fine-tuning, we also applied seq2seq learn-
ing using different datasets and tasks.

To pretrain our BiomedGPT, we used the AdamW74 optimizer with 
exponential decay rates for the first and second momentum estimates 
β1 = 0.9, β2 = 0.999, respectively, and a small constant ε = 1 × 10–8 added 
to the denominator to improve numerical stability. The peak learning 
rate is set to 1 × 10–4, and we applied a linear decay scheduler with a 
warmup ratio of 0.01 to control the learning rate. For regularization, 
we set the dropout to 0.1 and used a weight decay of 0.01. To enhance 
the training process, we used stochastic depth with a rate of 0.1, which 
was applied to the encoder and decoder, except for convolution blocks. 
Furthermore, we used a diversified approach in mixing all pretraining 
data within each batch. This included an assortment of multimodal, 
text-only, vision-only and object-detection samples. These were used 
in an 8:2:1:1 ratio to emphasize learning and enhance the interaction 
between vision and language. In addition, to address the potential 
feature shift caused by the inherent modality imbalance within the 
pretraining data, we adopted modality sampling strategies in each 
pretraining batch to ensure balance. The models were pretrained with 
10 NVIDIA A5000 GPUs and mixed precision75. Pretraining of the base, 
medium and small models took approximately 87, 32 and 9 h, respec-
tively. We initialized BiomedGPT with the pretrained OFA model51 and 
adapted it to the biomedical domain using our curated multimodal 
biomedical dataset. Specifically, we continued training from OFA’s 
pretrained checkpoints to align biomedical concepts using diverse 
modality data through masked modeling, OD and image–text matching 
(Extended Data Table 3). This approach could reduce computational 
efficiency as the continued training incorporates general-domain 
knowledge from OFA, including language-understanding capabilities 
that are beneficial for question-answering tasks.

Model fine-tuning and inference
Fine-tuning, a form of transfer learning, involves adapting a pretrained 
model’s weights to new data. The practice of fine-tuning pretrained 
models, a widely acknowledged and highly effective approach in 
natural-language processing and computer vision, has also found 
important application in medical AI76,77. Unlike most previous bio-
medical models that necessitate the addition and training of extra 
components, such as a linear output layer or a decoder, our BiomedGPT 
model relies solely on fine-tuning the existing structure. The specific 
instructions used for this fine-tuning procedure mirror those in the 
pretraining workflow, thereby maintaining consistency and efficiency 
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in model adaptation. We observed that, in tasks requiring long-context 
outputs, such as image captioning, the model’s performance is influ-
enced by hyperparameters, specifically beam search size and output 
length constraints (Supplementary Table 6). These findings informed 
our selection of hyperparameters for fine-tuning, which should be 
based on data statistics from the training set, such as the maximum 
length of the target text (Supplementary Table 7). For datasets with 
an official split, we selected the checkpoint that achieved the highest 
metric on the validation data for inference during model evaluation 
(Supplementary Table 7). For datasets lacking an official split, we 
employed k-fold cross-validation, used the checkpoint from the last 
epoch for inference and reported the mean and s.d.

Similar to existing large language models and multimodal mod-
els28, in inference, we used decoding strategies such as beam search to 
improve generation quality. However, this approach poses challenges 
for classification tasks, including unnecessary searching of the entire 
vocabulary and the possibility of generating invalid labels beyond 
the closed label set. To tackle these issues, we applied a beam search 
strategy incorporating a prefix tree (also known as a trie), limiting the 
number of candidate tokens and resulting in more efficient and accu-
rate decoding. Extended Data Figure 3d demonstrates an example of 
trie-based beam search; along the path across ‘Lipid’ and ‘breakdown’, 
BiomedGPT sets logits for all invalid tokens (‘mechanism’ and ‘path-
way’) to −∞ while computing log-probabilities for the target token ‘in’. 
It is worth noting that trie-based search was also applied during the 
validation phase of the fine-tuning stage for acceleration (approxi-
mately 16× increase in speed in our experiments).

Model instruction-tuning and zero-shot prediction
Instruction-tuning was developed to improve the question- 
understanding capabilities of the pretrained BiomedGPT. Following 
the data-curation method used for LLaVA-Med12, we diverged from 
the traditional VQA approach, in which a pre-built answer set is used 
during both training and inference. Instead, in our instruction-tuning 
method, an open-vocabulary setting is used, allowing the model to 
operate without a predefined set of answers and thereby enabling it 
to independently determine the most appropriate response during 
both the training and inference phases.

We summarized experimental settings for each zero-shot trial as 
follows. In the VQA-RAD zero-shot experiment (Fig. 4), we used the 
original questions from the dataset as prompts or instructions. For 
the disease-diagnosis zero-shot experiments (Extended Data Fig. 5b), 
we used a common prompt template: ‘Does the patient have <disease> 
given the image?’. The evaluation datasets were curated on the basis of 
the RSNA Pneumonia Detection Challenge (2018) (https://www.rsna.
org/rsnai/ai-image-challenge/rsna-pneumonia-detection-challenge-2
018) and MedMNIST v2 (images with a resolution of 224 × 224 pixels)36.  
Specific evaluations were conducted across different medical data-
sets: (1) pneumonia detection involved 1,000 randomly sampled 
cases from RSNA, including 548 pneumonia and 452 normal cases.  
(2) Malignant tumor detection used the BreastMNIST dataset, com-
prising 114 normal or benign cases and 42 malignant cases. (3) Mela-
noma recognition was based on a subset of DermaMNIST with 223 
positive melanoma cases. (4) Drusen recognition utilized a subset of 
OCTMNIST, featuring 250 positive drusen cases. (5) Cancer tissue iden-
tification was assessed on a PathMNIST subset, which included 1,233 
colorectal adenocarcinoma epithelium cases, 421 cancer-associated 
stroma cases, 339 debris cases and 741 normal colon mucosa cases. In 
TB detection and report generation using two-view CXRs (Extended 
Data Fig. 5c), we replicated the experimental settings and prompt 
templates used by Med-PaLM M. Additionally, we incorporated the 
MIMIC-CXR training set, which includes single-view image–caption 
pairs, during continual pretraining to ensure a fair comparison with 
Med-PaLM M. For report generation, we utilized common NLP metrics 
to align with Med-PaLM M.

Furthermore, we conducted preliminary zero-shot studies on 
two instruction-tuned large language models, aiming to explore the 
upper bounds of in-context learning performance using advanced 
language backbones. We considered the potential integration of these 
elements into BiomedGPT to enhance reasoning capabilities. However, 
these models exhibited notable discrepancies when compared with 
fine-tuned models (Supplementary Fig. 3). These findings suggest 
that future academic research in medical AI should focus on improving 
in-context learning abilities and text comprehension, which are crucial 
for real-world clinical tasks.

Model extension
BiomedGPT was initially developed to process visual (specifically 2D 
images) and text data. However, the prototype’s capabilities could be 
extended to encompass additional tasks and modalities. For example, 
we have extended BiomedGPT to include 3D medical imaging classifica-
tion (Extended Data Table 5 and Supplementary Table 4). This extension 
involved implementing both pretraining and fine-tuning stages. It 
requires only integrating a pretrained 3D VQ-GAN for tokenizing 3D 
images in masked image modeling and adding a learnable 3D visual 
encoder into the pipeline (Fig. 2a). To further extend the model’s capa-
bilities, especially for non-text generation tasks, such as segmentation, 
introducing additional decoders, such as a mask decoder, is appropriate.

Computing hardware and software
We used Python (version 3.7.4) for all experiments and analyses in the 
study, which can be replicated using open-source libraries as outlined 
below. For pretraining, we used ten 24-GB NVIDIA A5000 GPUs con-
figured for multi-GPU training using DistributedDataParallel (DDP) 
as implemented by the framework PyTorch (version 1.8.1, CUDA 12.2) 
with the sequence-to-sequence toolkit - fairseq (version 1.0.0). For 
masked image modeling, we first cropped the middle part of the image 
and converted it to a sequence of visual tokens based on the pretrained 
VQ-GAN model (https://heibox.uni-heidelberg.de/d/2e5662443a6b43
07b470/). Pillow library (version 9.0.1) was used to read images, which 
were then converted to the base64 string format using Python. Timm 
library (version 0.6.12), torchvision (version 0.9.1) and opencv-python 
(version 4.6.0) were applied for image processing and loading during 
training. We used the ftfy library (version 6.0.3) to fix potentially broken 
Unicode for text processing and loading. Einops library (version 0.6.0) 
was applied for tensor operations in modeling. For model evaluation, 
we used pycocotools (version 2.0.4) and pycocoevalcap (version 1.2) to 
calculate the NLP metrics such as ROUGE-L and CIDEr. Other metrics, 
calculated on the basis of torchmetrics (version 0.11.0). Numpy (ver-
sion 1.21.5) and Pandas (version 1.3.5), were used in data collection, 
preprocessing and data analysis.

Evaluation metrics
We used several evaluation metrics to thoroughly assess the capabilities 
of our BiomedGPT model across different tasks. Accuracy is a primary 
metric used for evaluating the performance in medical-image classifica-
tion, VQA and natural-language inference. In addition to accuracy, we 
also used the F1 score for the tasks in which class imbalance was consid-
ered. The F1 score is derived as the harmonic mean of precision and recall:

F 1 = 2 × precision × recall
precision + recall .

For a more convenient comparison with SOTA approaches, we used 
the weighted F1 score for VQA. This measure is computed by averaging 
the F1 scores across each class, with the individual class scores weighted 
according to their frequency of occurrence:

Weighted F 1 =
N
∑
i=1

ni
N × F1i,
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where ni is the number of instances in class i, N is the total number  
of instances across all classes and F1i is the F1 score for class i. 
Furthermore, we applied the macro-average F1 score (F1-macro) in 
image-classification tasks on the CBIS-DDSM dataset. The F1-macro 
score is calculated by determining the F1 score for each class inde
pendently and then averaging these scores across all classes. This 
approach does not account for class imbalances, treating each class 
with equal importance:

F 1 −macro = 1
N ×

N
∑
i=1
F1i.

The higher the accuracy and F1 score (either weighted- or 
maro-average), the better performance the model achieves.

ROUGE-L26 was used to evaluate the quality of the generated text 
on the image-captioning and text-summarization tasks. Given the 
candidate C and reference R, let LCS(C, R) be the length of the longest 
common subsequence, which is determined by using dynamic pro-
gramming, it can be expressed as:

ROUGE − L =
(1 + β2)RLCSPLCS

RLCS + β2PLCS
,

where RLCS =
LCS(C,R)

c
, RLCS =

LCS(C,R)
c

 and β = PLCS
RLCS

. c and r represent  

the length of the candidate and reference. A higher ROUGE-L score  
means that the generated text shares more of the same sequences of 
words as the reference text, which typically indicates better quality  
in terms of capturing the salient points of the reference. It suggests 
that the generated text is more similar to the reference summaries  
that it is being compared with, which is usually desirable in summariza-
tion tasks.

In addition to ROUGE-L, we also used METEOR27 and CIDEr28 to 
obtain a more comprehensive evaluation of captioning generation  
quality. For METEOR, we represented precision and recall as P = m

c
  

and R = m
r

, where m is the number of common words in the candidate 

C and the reference R with the number of words of c and r, respectively. 
METEOR is calculated as follows:

METEOR = (1 − p) PR
αP + (1 − α)R ,

where p is the penalty factor and is denoted as p = γ( ch
m
)
θ

, ch is the 
number of chunks, where a chunk is defined as a set of unigrams  
that are adjacent in the candidate and reference. α, θ and γ are  
hyperparameters that are set as 0.1, 3 and 0.5, respectively, in our 
calculation.

CIDEr is specifically designed to evaluate the quality of image cap-
tions. The CIDEr score is calculated using n-gram matching, considering 
both precision (how many n-grams in the generated caption are also in 
the reference captions) and recall (how many n-grams in the reference 
captions are also in the generated caption). It also weighs the n-grams 
based on their saliency (importance in describing the image) and rarity 
(uncommonness in the dataset), which helps to emphasize the impor-
tance of capturing the most relevant aspects of the image in the caption. 
CIDEr is obtained by averaging the similarity of different lengths:

CIDErn(c, S) =
1
M

M
∑
i=1

gn(c) ⋅ gn(Si)
‖gn(c)‖ ⋅ ‖gn(Si)‖

,

where c is a candidate caption, S is set of reference captions, M denotes 
the number of reference captions and gn(⋅)  is an n-gram-based  
term frequency-inverse document frequency vector. A higher CIDEr 
score suggests that the generated caption is more accurate and descrip-
tive of the image content, aligning well with human judgments of what 

the image represents. CIDEr can range from 0 to 100. Typically, human 
captions tend to score near 90 (ref. 28).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data in this study are publicly available and can be accessed from: 
IU X-ray and Peir Gross (https://github.com/nlpaueb/bioCaption), 
MedICat (https://github.com/allenai/medicat), PathVQA (https://
huggingface.co/datasets/flaviagiammarino/path-vqa), SLAKE 1.0 
(https://www.med-vqa.com/slake/), DeepLesion (https://nihcc.app. 
box.com/v/DeepLesion), OIA-DDR (https://github.com/nkicsl/OIA),  
CheXpert- v1.0-small (https://www.kaggle.com/datasets/willarevalo/
chexpert-v10-small), CytoImageNet (https://www.kaggle.com/ 
datasets/stanleyhua/cytoimagenet), ISIC 2020 (https://challenge2020.
isic-archive.com), Retinal Fundus (https://www.kaggle.com/c/
diabetic-retinopathy-detection), MIMIC-III Clinic Notes (https://papers-
withcode.com/dataset/hospital-admission-notes-from-mimic-iii),  
NCBI BioNLP (https://www.ncbi.nlm.nih.gov/research/bionlp/
Data/), PubMed abstracts derived from the BLUE benchmark (https://
github.com/ncbi-nlp/BLUE_Benchmark), VQA-RAD (https://osf.
io/89kps/), CBIS-DDSM (https://www.kaggle.com/datasets/awsaf49/
cbis-ddsm-breast-cancer-image-dataset), SZ-CXR and MC-CXR 
(access can be requested via the contact at http://archive.nlm.nih.
gov/repos/chestImages.php), MIMIC-CXR (https://physionet.org/ 
content/mimic-cxr-jpg/2.1.0/), MedNLI (https://physionet.org/content/ 
mednli/1.0.0/), TREC 2022 (https://www.trec-cds.org/2022.html), SEER 
(https://seer.cancer.gov), MIMIC-III (https://physionet.org/content/
mimiciii/1.4/), HealthcareMagic (https://huggingface.co/datasets/
UCSD26/medical_dialog), MeQSum (https://huggingface.co/datasets/
sumedh/MeQSum), MedMNIST v2 (https://medmnist.com) and ROCO 
(https://github.com/razorx89/roco-dataset). A randomly sampled 
subset of RSNA Pneumonia Detection Challenge (2018) was used for 
zero-shot prediction (https://www.rsna.org/rsnai/ai-image-challenge/
rsna-pneumonia-detection-challenge-2018). The MedMNIST-Raw is 
curated using multiple sources, including NCT-CRC-HE-100K (colon 
pathology) (https://zenodo.org/records/1214456), HAM10000 (der-
moscopy) (https://github.com/ptschandl/HAM10000_dataset), OCT 
and Chest X-ray (https://data.mendeley.com/datasets/rscbjbr9sj/3), 
breast ultrasound (https://scholar.cu.edu.eg/Dataset_BUSI.zip), blood 
cell microscopy (https://data.mendeley.com/datasets/snkd93bnjr/1) 
and Liver Tumor Segmentation Benchmark (LiTS) (https://competi-
tions.codalab.org/competitions/17094). The VQA data for human 
evaluation are derived from Medical-Diff-VQA (https://physionet.
org/content/medical-diff-vqa/1.0.0/), with the exclusion of questions 
related to differences, as these require a two-image input. Report 
generation and summarization samples for human evaluations are 
extracted from MIMIC-CXR. The instruction-following data used in this 
article are derived from Pubmed (https://pubmed.ncbi.nlm.nih.gov) 
following the LLaVA-Med approach (https://github.com/microsoft/
LLaVA-Med/blob/main/download_data.sh) and are combined with 
training sets from PathVQA and SLAKE. We also provided the table with 
more details of the major datasets in Extended Data Table 2.

Code availability
The pretrained and fine-tuned models, as well as source code for train-
ing, inference and data preprocessing, can be accessed at https://
github.com/taokz/BiomedGPT.
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Extended Data Fig. 1 | Statistics of pretraining and fine-tuning datasets.  
(a) Modality distribution of pretraining data used in BiomedGPT. (b) For the 
training and testing splits of datasets used in downstream fine-tuning, we 

typically follow the format of number of training samples/number of validation 
samples/number of test samples to detail each dataset. More details of the data 
split are described in Supplementary Table 7.
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Extended Data Fig. 2 | Overview of BiomedGPT’s model configuration 
and architecture. (a) Detailed model configuration of BiomedGPT. Here, ‘#’ 
indicates number of. ‘Att.’, ‘Enc.’ and ‘Dec.’ indicate Attention, Encoder and 
Decoder, respectively. The hidden size is the size of the embeddings and the size 
of the output of each self-attention and feed-forward layer. The first layer of FFN 
expands the hidden size to the intermediate size, and the second layer contracts 
it back to the hidden size. This expansion and contraction allow the network 
to create more complex representations. During the pretraining phase, image 

processing involves resizing and cropping the images to varying resolutions, 
corresponding to the input sizes listed in the table. It should be noted that  
during fine-tuning and inference stages, the input resolution of BiomedGPT can 
be flexibly adjusted according to the specific requirements of the task.  
(b) The neural network architecture of BiomedGPT, which includes bidirectional 
encoder blocks and autoregressive decoder blocks. The number of blocks varies 
for different model scales.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | The graphical illustrations of the key components in 
BiomedGPT. (a) Head-scale multi-head attention module in BiomedGPT. The 
trainable parameters γh is applied prior to the output projection for each head. 
(b) Instead of adding the absolute positional embedding Pi to the input 
embedding Ii (left), we compute the positional correlation and input correlation 
separately with different projection matrices and add them together in the 
self-attention module (right). (c) Graphical illustration of relative position bias. 
Such an inductive bias Bj-i is learnable parameter and can be viewed as the 

embedding of the relative position j−i, which is injected into the Query-Key 

product: 1
√d
(IiWQ)(PiWK) + Bj−i, and shared in all layers. (d) An example of 

trie-based beam search: along the path across ‘Lipid’ and ‘breakdown’, 
BiomedGPT sets logits for all invalid tokens (‘mechanism’ and ‘pathway’) to −∞ 
when computing log-probabilities for the target token ‘in’. It is worth noting that 
trie-based search is also applied during the validation phase of the fine-tuning 
stage for acceleration (approximately 16× increase in speed in our experiments).
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Extended Data Fig. 4 | Comparative Performance of BiomedGPT and  
Med-PaLM M and the prompt tuning results in Image classification.  
(a) Comparison between BiomedGPT-B and Med-PaLM M on CBIS-DDSM dataset. 
(b) The experimental results of prompt tuning BiomedGPT-B on three image 
classification datasets. Prompt tuning learns ‘soft prompts’ or extra model 
parameters for each task instead of making a task-specific copy of the entire 
pretrained model for each downstream task and inference must be performed in 
separate batches. We must mention that the addition of soft prompts is contrary 
to the design principle of the generalist model. We injected two prompt layers 
into the encoder and decoder, and varied the prompt length {20, 40, 60, 80, 100, 

120} to investigate the performance comparison against full-model fine-tuning. 
The preliminary results of ‘Colon pathology’, ‘Blood cell microscope’, and ‘Chest 
X-ray’ were obtained after 100, 512, and 55 training epochs respectively, all with a 
consistent batch size of 512. We observed that as the prompt length increases, the 
model performance tends to improve. However, despite an increased number of 
tuning epochs compared with fine-tuning on the original BiomedGPT (Fig. 3c), 
the performance after prompt tuning notably lags behind that of model fine-
tuning. Specifically, considering only the best results in prompt tuning, there 
are substantial accuracy reductions of 32.3%, 54.6%, and 32.6% on these three 
datasets, respectively.
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Extended Data Fig. 5 | Additional zero-shot results of BiomedGPT.  
(a) Graphical illustration of zero-shot classification using CLIP-style models, 
linear probing transfer learning using VIT or BERT-style models, and zero-shot 
generation of BiomedGPT. Notably, our model can generate the response 
without providing additional components such as the label candidates for 
CLIP or linear classifier requiring training for ViT. (b) Zero-shot performance 
on five disease diagnosis tasks. (c) BiomedGPT shows competitive zero-shot 
performance compared with Med-PaLM M with a much smaller model scale. 
The SOTA fine-tuned model for TB detection is TBLightNet. Note that no single 

model consistently outperforms the others across all four metrics used in report 
generation. Here, SOTAs represent the best performance achieved in each 
specific metric. We fine-tuned our pretrained BiomedGPT-B on MultiMedBench, 
which Med-PaLM M proposed and used for fine-tuning based on the pretrained 
PaLM-E. We also attempted to fine-tune LLaVA-Med; however, the time and 
computational costs were prohibitive due to the large scale of the model and 
data. Therefore, we reported the results using the pretrained checkpoint of 
LLaVA-Med.
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Extended Data Table 1 | Fine-tuned experimental results of BiomedGPT on 25 diverse experiments
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Extended Data Table 2 | Datasets used in BiomedGPT for pretraining, fine-tuning, evaluation with details
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Extended Data Table 3 | Instructions for pretraining tasks along with the corresponding format of the output

Here, <img> represents the image token derived from VQ-GAN’s vocabulary. <loc> represents the location token. The instruction for the VQA task is the question itself from the dataset.
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Extended Data Table 4 | Description of the question types for human evaluation

Description of the question types in the selected VQA-RAD data samples, which are used for the evaluation of zero-shot learning performance.
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Extended Data Table 5 | 3D medical image classification performance

3D medical image classification performance in terms of accuracy and F1-Macro. (Details of data and training are described in Supplementary Table 4).

http://www.nature.com/naturemedicine







	A generalist vision–language foundation model for diverse biomedical tasks

	Results

	Pretraining using large and diverse datasets

	Fine-tuning for downstream tasks

	BiomedGPT is lightweight but competitive in multimodal tasks

	BiomedGPT enables accurate medical-image classification

	BiomedGPT understands and summarizes clinical text

	BiomedGPT can perform zero-shot prediction on new data

	Human evaluation of BiomedGPT for radiology tasks

	Radiology VQA
	Radiology report generation
	Radiology report summarization


	Discussion

	Online content

	Fig. 1 BiomedGPT can process diverse modalities and perform versatile tasks.
	Fig. 2 An overview of BiomedGPT: workflow, performance and pretraining datasets.
	Fig. 3 BiomedGPT performs fine-tuning for vision–language and medical-image-classification downstream tasks.
	Fig. 4 BiomedGPT performs few-epoch transfer learning for clinical-text understanding and summarization and generates a response through zero-shot transfer learning.
	Fig. 5 Human evaluation of the VQA, text-summarization and captioning tasks.
	Fig. 6 Results of the ablation study on the impact of diversity of pretraining datasets and tasks and a graphical demonstration of BiomedGPT’s design.
	Extended Data Fig. 1 Statistics of pretraining and fine-tuning datasets.
	Extended Data Fig. 2 Overview of BiomedGPT’s model configuration and architecture.
	Extended Data Fig. 3 The graphical illustrations of the key components in BiomedGPT.
	Extended Data Fig. 4 Comparative Performance of BiomedGPT and Med-PaLM M and the prompt tuning results in Image classification.
	Extended Data Fig. 5 Additional zero-shot results of BiomedGPT.
	Extended Data Table 1 Fine-tuned experimental results of BiomedGPT on 25 diverse experiments.
	Extended Data Table 2 Datasets used in BiomedGPT for pretraining, fine-tuning, evaluation with details.
	Extended Data Table 3 Instructions for pretraining tasks along with the corresponding format of the output.
	Extended Data Table 4 Description of the question types for human evaluation.
	Extended Data Table 5 3D medical image classification performance.




